
One Packet Suffices – Highly Efficient Packetized
Network Coding With Finite Memory

Bernhard Haeupler
RLE, CSAIL

Massachusetts Institute of Technology
Email: haeupler@mit.edu

Muriel Médard
RLE

Massachusetts Institute of Technology
Email: medard@mit.edu

Abstract—Random Linear Network Coding (RLNC) has emerged
as a powerful tool for robust high-throughput multicast. Projec-
tion analysis, a recently introduced technique, shows that the dis-
tributed packetized RLNC protocol achieves (order) optimal and
perfectly pipelined information dissemination in many settings. In
the original approach to RNLC intermediate nodes code together
all available information. This requires intermediate nodes to
keep considerable data available for coding. Moreover, it results
in a coding complexity that grows linearly with the size of this
data. While this has been identified as a problem, approaches
that combine queuing theory and network coding have heretofore
not provided a succinct representation of the memory needs of
network coding at intermediates nodes.
This paper shows the surprising result that, in all settings
with a continuous stream of data, network coding continues to
perform optimally even if only one packet per node is kept
in active memory and used for computations. This leads to
an extremely simple RLNC protocol variant with drastically
reduced requirements on computational and memory resources.
By extending the projection analysis, we show that in all settings
in which the RLNC protocol was proven to be optimal its finite
memory variant performs equally well. In the same way as the
original projection analysis, our technique applies in a wide
variety of network models, including highly dynamic topologies
that can change completely at any time in an adversarial fashion.

I. INTRODUCTION

Random linear network coding (RLNC) has been shown to
robustly achieve network capacity in multicast scenarios [1].
It is asymptotically optimal rate-wise even in the presence of
erasures when the erasures are globally known [2] or not [3],
[4]. For distributed packet networks with unknown or changing
topologies a packetized RLNC protocol was suggested [3], [5].
This RLNC protocol has been intensely studied, mostly under
the name of algebraic gossip [6]–[10]. Recently, this line of
work cumulated in the introduction of projection analysis [11],
a general technique that provides tight optimal bounds for all
network models considered up to this point. None of the above
works takes into account the memory required at nodes that
participate in the dissemination with no intent on collecting
all data. They also do not consider the size of the data upon
which coding takes place. While this has been identified as an
important problem, the solutions offered so far [12]–[15] are
very restricted.
In this paper we consider network coding with very limited ac-
tive memory. We show the surprising result that, in all settings

This material is based upon work under subcontract 18870740-37362-
C issued by Stanford University and supported by the Defense Advanced
Research Projects Agency (DARPA).

with a continuous stream of data, network coding continues
to perform optimally even if only one packet per node is kept
in active memory. We introduce two extremely simple and
efficient RLNC variants that use only minimal memory and
computational resources. By extending the projection analysis,
we give a general technique to obtain tight performance
guarantees on these variants. In the same way as the projection
analysis our technique applies in a wide variety of network and
communication models including highly dynamic topologies
that change completely at every time in an adversarial fashion.
In all these settings the (order) optimal performance guarantees
we obtain for the new protocols matches the best guarantees
known for the full-blown RLNC protocol. We provide ex-
amples for relaxations of classical expansion parameters like
isoperimetry that give tighter capacity characterizations for
(these) dynamic networks.

II. RELATED WORK

In this section we summarize related work that addresses the
question of reducing coding buffer sizes:
The impact of finite memory was first considered in [12].
The paper takes a fairly involved Markov chain approach to
model the evolution of the degrees of freedom at a single
intermediate node. Its analysis is restricted to communication
along a simple path and the field size, q, is assumed to be
unbounded, which evades the question of likelihood of an
unhelpful transmission. In general networks [3] and [8] use
queuing approaches of the Jackson Networks type but their
analysis track degrees of freedom rather than actual packets
and does not explicitly consider memory. References [13], [14]
show that it suffices for a node to keep only the coset space of
the intersection of the data received at the node and of all the
spaces representing the data received by its neighbors. How-
ever, that work requires feedback and establishes sufficiency
of the coset space, not necessity. Moreover, the coset space is
in many cases of the same order as the entire space we seek
to transmit and the results do not hold under variable network
topologies, which would lead to variable coset spaces. Lastly,
[15] proposes network coding with spatial buffer multiplexing.
It analyzes large multi-hop networks with reduced size packet
buffers and shows that asymptotically the network acts as a
shared buffer if the length of flow paths and the number of
flows through each node are both polynomially large.

III. MULTICAST IN DYNAMIC NETWORKS

In this section we briefly review the many-to-many multicast
problem and the dynamic network model considered in this
paper. We refer to [11] for an extensive discussion of the
generality of the approach taken here, the various network
and communication models it applies to and how these models
encompass and generalize models given in prior literature.
The many-to-many multicast problem is a typical distributed
information dissemination problem. Some information is
known to a subset of nodes in a network and through com-
municating with each other all nodes (or a different subset
of recipients) are supposed to learn about all information.
In many modern networks like P2P-networks, or (wireless)
ad-hoc meshes protocols have to deal with unknown, highly
unstable or dynamic network topologies. We formalize this
by assuming a dynamic network consisting of n nodes. The
topology for every time t is specified by a graph G(t)
which is chosen by a fully adaptive adversary that knows the
complete network state including which node knows what.
For simplicity we assume that the adversary decides on a
topology before the nodes (randomly) generate their packets
for the current round. This requirement can be dropped [10].
Nodes have no knowledge of the topology and decide on
a packet to send. Whether a packet gets delivered to the
neighbor(s) of a node depends on the communication model.
At time t = 0 the adversary distributes k messages each to
at least one node. We assume that the messages ~m1, . . . , ~mk

are l dimensional vectors over a finite field Fq , where q is a
sufficiently large prime or prime power. We are interested in
analyzing the stopping time of a protocol, i.e., the expected
time until all recipients know all messages. All our results
hold with exponentially high probability.

IV. THE RLNC PROTOCOLS

In this section we review RLNC, the packetized network
coding protocol [3], [5], and introduce two variants that use
only a finite amount of active memory: the accumulator FM-
RLNC (from [12]) and the recombinator FM-RLNC.
Every packet used by the protocols has the form (~µ, ~m),
where ~m =

∑k
i=1 µi ~mi ∈ F l

q is a linear combination of the
messages, and ~µ = (µ1, . . . , µk) ∈ F k

q is the vector of the
coefficients. Each node u keeps a set of active packets. If a
node u knows message mi initially we assume (ei,mi) to
be an active packet of u, here ei is the ith unit vector in Fk

q .
Whenever a node u is supposed to send out a packet, it chooses
a random vector from the span of its active packets. Every
node that is interested in decoding keeps all received packets
until their coefficient vectors span the full space Fk

q . Gaussian
elimination can then be used to reconstruct all messages.
The protocols solely differ in what packets are kept active.
In the regular RLNC protocol each node v has unlimited
memory and simply keeps all received packets active. The FM-
RLNC variants, on the other hand, only keep s active packets.
Therefore, whenever a new packet is received it is not stored
but simply combined with the s stored packets. We introduce
two possible ways of doing so. The accumulator FM-RLNC

scheme adds random linear combinations of the incoming
packets to the stored s active packets. The recombinator FM-
RLNC scheme creates the new s packets as uniform random
samples from the span of the stored and new packets. For
s = 1 both approaches are equivalent. We note that the shift
register scheme from [12] does in general not perform well in
dynamic settings, which is why we do not consider it here.
A. Complexity Comparison

We briefly show the improved computational and memory
complexity of the two FM-RLNC variants in comparison to
the standard RLNC protocol.
The RLNC protocol described in Section IV keeps all received
packets in memory, even if they are already in the span of the
stored packets. To avoid storing and frequently accessing these
redundant packets it is often better to maintain the span of the
received packets via a non-redundant basis. This is done by
keeping only innovative packets, that increase the dimension
of the span. This comes at the cost of an additional rank
computation of a k×k matrix for every received packet (which
can be partially reused by storing an orthogonal basis instead).
More importantly the RLNC protocol still requires each node
to have k memory, enough to store all packets in the system.
Even worse, at every time a packet is generated all k packets
need to be accessed, which results in k cache-unfriendly IO-
operations per sent packet.
The FM-RLNC protocols drastically reduce this complexity.
Both require only space for s packets in their active memory
and need only s (IO-)operations per packet sent out. Both
protocols access the s packets for each received packet but
differ slightly in their operations on these packets. While the
recombinator requires O(s2) operations, the accumulator FM-
RLNC protocol needs performs only one addition for each of
the s packets. For s = O(1) this is a drastic reduction of
the O(k) RLNC complexity. Beyond this, another important
advantage of the FM-RLNC variants is that the number of
active packets is so small that they can be entirely kept in
fast (cache) memory. Using only a finite amount of memory
and extremely simple arithmetic furthermore opens many
possibilities to implement coding directly in hardware, e.g.,
in routers, switches or sensors.

V. EXTENDING THE PROJECTION ANALYSIS

In this section we show how the projection technique from
[11] can be extended to analyze the FM-RLNC protocols.
It is clear that every packet with coefficient vector ~µ also
contains the linear combination of the messages specified by
~µ. Throughout the rest of this paper, we thus solely concentrate
on the spreading of the coefficient vectors. The technique from
[11] can be understood as analyzing this spreading process by
tracking qk projections of it; one along each direction in F k

q :
Definition 5.1: A node A knows about ~µ ∈ Fq if its coefficient
subspace of all its active packets is not orthogonal to ~µ, i.e.,
if there it has an active packet with coefficient vector ~c such
that 〈~c, ~µ〉 6= 0.
Each such projection behaves like a 1/q-faulty one-message
flooding process:

Lemma 5.2: If a node u knows about a vector ~µ and transmits
a packet to node v then v knows about ~µ afterwards with
probability at least 1 − 1/q for the RLNC protocols and at
least (1 − 1/q)(1 − 1/qs) > 1 − 2/q for both FM-RLNC
protocols.

Proof: Since node u knows ~µ one of its active packets
has a coefficient vector that is non-perpendicular to ~µ. This
packet gets randomly mixed into the packet that is send out by
u which is therefore non-perpendicular to ~µ with probability
1/q. If this is the case, then node v learns ~µ if it uses the RLNC
protocol. If it uses a FM-RLNC protocol then the received
packet gets randomly mixed into each of the s active packets
and the probability that all these packets are perpendicular to
~µ is q−s.
In the RLNC case, the spreading of knowledge for a vector
~µ is an easy to understand monotone increasing set growing
process: It is a directed acyclic Markov chain with one
absorbing state and its stopping probability therefore has an
exponentially decaying tail. If T is the expected stopping time,
i.e., the expected time for one message to flood then the
probability that a fixed vector ~µ has not spread after t = T +k
time is (usually) at most q−O(k). Taking a union bound over
all vectors from Fk

q implies that after t = O(T + k) time all
nodes know all vectors and can decode.
Unfortunately, the spreading process of knowledge for a ~µ in
the FM-RLNC protocols is not a monotone process anymore.
Keeping only a small number of active packets makes many
nodes “forget” vectors. The next lemma gives a formal defi-
nition and specifies the probability that this happens:
Lemma 5.3: We say a node forgets a vector ~µ ∈ F k

q if
it knows about it and after reception of a packet does not
know about it anymore. The probability that a node forgets
a fixed vector ~µ ∈ F k

q after receiving a packet is at most
q−s if it keeps s active packets and runs the accumulator or
recombinator FM-RLNC protocol.

Proof: We first analyze the recombinator FM-RLNC.
In order to forget ~µ the span of the active and received
packets needs to contain a component non-perpendicular to
~µ. Thus, each new active packet that is created from this
span is perpendicular to ~µ with probability exactly 1/q. The
probability that all s new active packets are perpendicular to ~µ
is thus exactly q−s. For the accumulator a similar proof works.
If the received packet is perpendicular to ~µ, then the active
packet that was non-perpendicular to ~µ before will remain
non-perpendicular. If, on the other hand, the received vector
is non-perpendicular to ~µ then each new active vector has a
1/q chance of being non-perpendicular to ~µ. Again, the chance
that all of the s active packets are perpendicular is q−s.
Remark: Note that it is highly unlikely, but nevertheless possi-
ble, that a direction gets lost completely. While this probability
is often negligible in practice, it can be completely avoided if
the sources of the k messages keep the packets associated with
these messages unchanged as active packets. This also avoids
the possibility of a node with s < k active packets receiving
more packets than it can store in the beginning. Therefore,
throughout the rest of this paper, we use the assumption that

no vector from Fk
q gets completely forgotten.

Looking at the inverse dependence on q in Lemma 5.3 suggests
a simple way to get around the problem of nodes forgetting
a vector ~µ, namely choosing q large enough. For example, if
q is polynomial in both the running time of the protocol and
n then a union bound shows that the probability that a vector
~µ gets ever forgotten is at most 1/ poly(n). Unfortunately, an
inverse polynomially failure probability for each vector is not
sufficient to finish the proof as before with a union bound
over the exponentially many vectors in Fq . Indeed, it is clear
that for s < k a node has to forget many vectors to be able
to learn others. Thus, instead proving as before that at some
point each vector ~µ is known by all nodes we show that after
a long enough time each vector knew ~µ (and then forgot it).
This time at which a node knows a vector ~µ can in principle
be different for every node. We prove the simpler but stronger
statement that, for each ~µ, there is with exponentially high
probability one point in time at which all nodes know it. Even
so the last step and the two union bounds seem very crude it
turns out that, averaged over the exponentially many vectors,
our bounds are spot on in the worst case and lead to simple
proofs of (order) optimal convergence times.
The same is true for our choice of q. We first want to mention
that choosing q = poly(n) is a reasonable choice for the
field size which leads to practical coefficients sizes that are
logarithmic in n. Indeed, in all prior work [7]–[9], except
for [11], coefficients of this size are required. Secondly we
have a strong lower bound that logarithmic size coefficients
are necessary if one wants to keep only finitely many active
packets per node. The following lemma shows the sharp
threshold result that even slightly sub-logarithmic coefficient
sizes lead to exponentially long running times in adversarial
dynamic networks. The lemma holds in all communication
models in which nodes can only communicate with their
neighbors and the proof also nicely demonstrates the power
of an adaptive adversary:
Lemma 5.4: For any q, with log q = o(log n

s), there is an
adaptive adversary that chooses an always connected network
(with diameter two at any time) on which the FM-RLNC
protocol with s active packets takes, with high probability,
at least en

1−o(1)

time to succeed.
Proof: The adversary picks one direction ~µ that is initially

not known to at least two nodes v and u. In each round, it
connects all nodes except v by a clique and then connects v to
one node that does not know ~µ. If there is no such node then
the adversary gives up and connects v to all other nodes. In
each round, there are at most n−1 nodes that know ~µ or have
received a packet from a node that does. Each of these nodes
has a chance of exactly 1− 1/qs to know ~µ after this round.
The probability that all nodes indeed know about ~µ and make
the adversary give up is at most (1− 1/qs)n−1 ≤ e−(n−1)/qs

and, since qs = no(1), we obtain that the probability for
the adversary to fail is at most e−n

1−o(1)

. Using Markov’s
inequality or Chernoff bounds shows that it takes with high
probability at least en

1−o(1)

rounds before the FM-RLNC
protocol succeeds.

VI. OUR RESULTS

Next, we use the analysis technique developed in the last
section and demonstrate via several examples that essentially
the same bounds as proven in [11] for the RLNC protocol
hold for the FM-RLNC protocols even with s = 1.
We start by giving results for the FM-RLNC protocol in the
synchronous broadcast network model from [11], [16]: At each
time t, the adversary adaptively chooses the topology of the
network as a (directed) graph G. Each node then creates a
packet which is delivered to all its current neighbors.
Lemma 6.1: The synchronous broadcast FM-RLNC protocol
even with s = 1 takes with high probability at most O(n

l +
k) time to spread k messages if the (directed) graph G is
(strongly) l-vertex-connected at any point of time.

Proof: We fix a vector ~µ ∈ F k
g (with ~µ 6= ~0) and analyze

how knowledge of it spreads through the network. The vector
~µ is known to at least one node in the beginning, namely
any node who knows about message i where i is a non-zero
component in ~µ. We define a round as a success if all nodes
that are connected to a node that knows about ~µ learn about ~µ
and no node forgets ~µ. If this does not happen, we define the
round as a failure. We furthermore count a round as r failures
if r nodes forget about ~µ.
We want to prove that the probability for a failure is at
most q−1+o(1). For this, we set q = nω(1), which leads to
a coefficient size only slightly larger than O(log n). Lemma
5.3 states that the probability for one node to forget ~µ is at
most 1/q. The probability for r nodes to forget ~µ is thus at
most

(
n
r

)
(q−s)r < (n/q)r < q−r(1−o(1)). If no node forgot ~µ,

then the only possibility for a failure is that at least one node
failed to learn about ~µ. Lemma 5.2 bounds this probability
for one node by 2/q and a simple union bound over all nodes
shows that the probability for at least one node to fail this way
is at most 2n/q = q−(1−o(1)).
The l-connectivity of the network guarantees that every suc-
cessful round results in either all nodes knowing ~µ or in at
least l more nodes learning about it. Any failure, on the other
hand, can only decrease the number of nodes that know ~µ by
one. Thus if we we run the FM-RLNC protocol for 5(n

l + k)
rounds either at some point all nodes knew about ~µ or there
are at least 2k failures. The probability for this is at most
nO(k)q−2k(1−o(1)) < q−1.5k. Taking a union bound over all
qk vectors shows that, with high probability, after O(n

l + k)
each vector was known to each node at least once. Therefore,
if each recipient keeps all packets that are streamed through
it, the coefficient vectors span the full space Fk

q and the node
will be able to decode.
Note that, while both the example and the proof are very
simple, any similar result has been elusive to obtain so far.
Note also that the analysis is, up to constants, tight in the
worst case, since the diameter of a l-vertex-connected graph
can be Θ(n

l) and, if all messages start in one node v, it is
also clear that at least k rounds are needed, since at each
round only one packet is formed by v. The lemma thus shows,
that FM-RLNC achieves an optimal, perfectly pipelined [11]

information spreading in always connected networks, even if
only one packet is stored per node.
In the same manner, most proofs in [11] can be extended to
the FM-RLNC protocol. Next, we do this for Lemma 6.4 of
[11], that characterizes the stopping time for the synchronous
broadcast model by its isoperimetric expansion, which is tight
for most regular graphs. Emphasizing the applicability in a
dynamic setting we show here that the proof does not just
extend to the FM-RLNC setting but also to a much more
flexible and weaker notion of isoperimetry for dynamic graphs
which we introduce next:
Definition 6.2 (Relaxed Isoperimetry): For a graph G and a
subset S let hG(S) be the union of S and the (directed)
neighborhood of S, i.e., the nodes in S that are reachable
from S via directed or undirected edges. The isoperimetric
number of G is defined as h(G) := min∅6=S⊆V

|hG(S)|−|S|
min(|S|,|S|) .

Building on this we say a dynamic graph G(t) has a relaxed
isoperimetric number H(G) if there exists a constant ∆ such
that for every non-empty subset S ⊆ V and every time t we
have:

|
⋃t+∆−1

i=t (hG(i) ◦ . . . ◦ hG(t+1) ◦ hG(t))(S)| − |S|
min(|S|, |S|)∆

≥ H(G)

Note that relaxed isoperimetry is indeed a relaxation of
the isoperimetric number: for ∆ = 1 we have H(G) =
mint h(G(t)). Since hG(t) is a monotone function, we also
get that the numerator is at least |

⋃t+∆−1
i=t hG(i)(S)| − |S|

and scaling this by 1/∆ can be interpreted as an average over
the neighbor sizes. Indeed, if the average isoperimetric number
of G(t) over every window of size ∆ is at least h then we also
have H(G) > O(h). If, e.g., the adversary chooses an empty
graph every other round then the relaxed isoperimetry only
gets reduced by a factor of 1/2. Furthermore, a large enough
average isoperimetric number is required only for every subset
individually and not simultaneously. This gives many always
disconnected dynamic graphs a large relaxed isoperimetric
number even though the isoperimetric number of G(t) is zero
at any time. Lastly, iterating the neighborhood function hG(t)

allows subsets to expand over ∆ steps instead of just in their
direct neighborhood. In summary, instead of requiring every
set to expand at every time in its direct neighborhood the
relaxed notion only calls for every individual set to have a
high enough multi-step expansion on average.
The following lemma shows again that keeping just s = 1
active packets suffices to achieve the optimal performance of
the RLNC protocol.
Lemma 6.3: The synchronous broadcast FM-RLNC protocol
with s = 1 takes with high probability at most O(log(nH(G))

H(G) +

k) steps to spread k messages in a dynamic network G.
Proof: We extend the proof of Lemma 6.4. in [11] to

the FM-RLNC setting and the relaxed notion of isoperimetry.
For sake of space we only sketch the proof here. The analysis
concentrates again on the spreading of one vector ~µ and is
done in phases of ∆ rounds. We use the same definition of
successes and (multi-)failures for phases as in Lemma 6.1.

Choosing q in the same way also leads to the same proba-
bilities for failures and successes. Note, that, in a successful
phase, the number of nodes that know about ~µ increases by at
least a factor of 1+O(H) (or the number of nodes that do not
know ~µ decreases by the same factor). Thus, taking integrality
into account, it is easy to see that a net of T = O(log(nH)

H)
successes suffices. The probability that this does not happen
after O(T + k) steps is at most q−O(T+k) and a union bound
over all qk vectors finishes the proof.
A similar result can be proven for the asynchronous BROAD-
CAST model [11] in which at every round one node gets
selected at random to broadcast its packet to its neighbors. To
cover a very different model for our final example we choose
a result on the performance of RLNC in the asynchronous
single transfer model from [11]. In this model, the adversary
adaptively chooses a probability distribution over edges in each
round from which the single transaction for the next round
is then sampled. While for the RLNC protocol coding with
binary coefficient (i.e., q = 2) works Lemma 5.4 shows that
this is not possible using finite memory. The next lemma
demonstrates another way to circumvent this lower bound:
using logarithmically many active packets suffices. In the same
way as done for Lemma 6.3, we replace the min-cut criterion
by the weaker min-average-cut, i.e., a sufficient average cut
over each finite time window of length ∆ = O(1) for each
subset individually.
Lemma 6.4: In a dynamic network G with min-average-cut at
least C, the asynchronous single transfer FM-RLNC protocol
that uses binary coefficients (i.e., q = 2) and keeps only s =
Ω(log n) active packets spreads n messages with probability
at least 1− 2−n in order optimal O(n

C) time.
Note that, e.g., choosing G(t) in every round to be the
complete graph with uniform probabilities shows that the
asynchronous random phone call model [6] remains to spread
rumors in optimal time if the FM-RLNC protocol is used.

VII. CONCLUSION

This paper investigates the performance of RLNC with finite
memory. We have presented two highly efficient variants of
the packetized RLNC implementation in which each node only
keeps one packet in active memory. We have furthermore given
a very general analysis technique that allows to prove tight and
order optimal stopping times for these FM-RLNC protocols in
a wide variety of settings, including highly dynamic networks
that are controlled by a fully adaptive adversary. In all cases
considered here the performance of the FM-RLNC protocols
is, up to small constant factors, on par with the full-blown
RLNC protocol while offering a drastic reduction in memory
and computational complexity. Subsequently we could show
[17] that, if one restricts the adversary to be oblivious, then
both the RLNC protocol and its FM-RLNC variants stop with
high probability in information theoretically optimal time:
the protocols achieve with high probability the exact same
stopping time as the best possible dissemination algorithm
(using the same buffer sizes) even if this algorithm knows
the (dynamic) topology in advance. This further supports the

suggestions in this paper for a simple and efficient memory
management scheme beyond the approaches in [12]–[15]. We
leave determining a good upper bound for the minimal needed
buffer size as an open problem for future work but speculate
that in practice choosing s slightly larger than the variance of
the observed or expected traffic patterns might work.
Determining RLNC stopping times or, equivalently [17], de-
termining network capacities, remains an interesting and hard
question for many network models; especially for the restricted
memory setting addressed here. We believe that the generality
and simplicity of the extended projection analysis technique
developed in this paper will prove to be helpful in further
studies on this topic.

Acknowledgments:
We thank David Karger and Chen Avin for helpful comments.

REFERENCES

[1] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory (TransInf), vol. 52, no. 10,
pp. 4413–4430, 2006.

[2] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity
of wireless erasure networks,” IEEE Transactions on Information Theory
(TransInf), vol. 52, no. 3, pp. 789–804, 2006.

[3] D. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,” Physical Communication, vol. 1,
no. 1, pp. 3–20, 2008.

[4] ——, “Further results on coding for reliable communication over packet
networks,” in Proc. of the IEEE International Symposium on Information
Theory (ISIT), 2005, pp. 1848–1852.

[5] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc. of the
41st Allerton Conference on Communication Control and Computing,
vol. 41, 2003, pp. 40–49.

[6] S. Deb and M. Médard, “Algebraic gossip: a network coding approach
to optimal multiple rumor mongering,” in Proc. of the 42rd Allerton
Conference on Communication, Control, and Computing, 2004.

[7] S. Deb, M. Médard, and C. Choute, “On random network coding based
information dissemination,” in Proc. of the International Symposium on
Information Theory (ISIT), 2005, pp. 278 –282.

[8] M. Borokhovich, C. Avin, and Z. Lotker, “Tight bounds for algebraic
gossip on graphs,” in Proc. of the IEEE International Symposium on
Information Theory (ISIT), 2010, pp. 1758–1762.

[9] D. Mosk-Aoyama and D. Shah, “Information dissemination via network
coding,” in Proc. of the IEEE International Symposium on Information
Theory (ISIT), 2006, pp. 1748–1752.

[10] B. Haeupler and D. Karger, “Network Coding: Beating Token Forward-
ing Lower Bounds in Dynamic Networks,” in submission, 2011.

[11] B. Haeupler, “Analyzing Network Coding Gossip Made Easy,” in Proc.
of the 43nd Symposium on Theory of Computing (STOC), 2011.

[12] D. S. Lun, P. Pakzad, C. Fragouli, M. Médard, and R. Koetter, “An
analysis of finite-memory random linear coding on packet streams,” in
Proc. of the International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt), 2006, pp. 1–6.

[13] J. Sundararajan, D. Shah, and M. Médard, “On queueing in coded
networks-queue size follows degrees of freedom,” in IEEE Information
Theory Workshop on Information Theory for Wireless Networks (ITW),
2007, pp. 1–6.

[14] K. Sundararajan, D. Shah, and M. Médard, “ARQ for network coding,”
in Proc. of the IEEE International Symposium on Information Theory
(ISIT), 2008, pp. 1651–1655.

[15] S. Bhadra and S. Shakkottai, “Looking at Large Networks: Coding
vs. Queueing,” in Proc. of the 25th IEEE International Conference on
Computer Communications (INFOCOM), 2007, pp. 1–12.

[16] F. Kuhn, N. Lynch, and R. Oshman, “Distributed computation in
dynamic networks,” in Proc. of the 42nd Symposium on Theory of
Computing (STOC), 2010, pp. 557–570.

[17] B. Haeupler, M. Kim, and M. Médard, “Optimality of Network Coding
in Packetized Networks,” ArXiv, 2011.

